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A periodic contact problem for an elastic half-plane with elastic laps of finite length
and constant thickness is considered herein,

The solution of this problem reduces to a singular integro-differential equation with
a Hilbert kernel in an interval not coincident with (— 7, ), which permits the deter-
mination of contact stresses along the sections where the elastic laps are fastened to the
half-plane. An effective solution of this equation containing explicitly those singulari-
ties which characterized the state of stress of the elastic laps in the neighborhoods of
their ends, is presented,

Insofar as we know, this is the first formulation and solution of the problem mentioned,

1, Formulation of the problem, Derivation of the fundamental
equation and {ts solution, Leta half-plane be reinforced at finite segments
[—a +2nl,a + 2nll (I >a,n=0, 41, 4 2,...) by elastic fastenings dup-
licated periodically with period 2] in the form of welded (or glued) elastic laps of con-
stant sufficiently small thickness % (Fig, 1), The purpose of the investigation is to deter-
mine the law of contact stress distribution along the segments where the elastic laps are
fastened to the elastic half-plane when concentrated forces P directed along their axis
are applied to one of the ends of the laps, As in [1], we shall assume that the bending
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stiffness of the laps is negligibly small because of the smallness of the thickness /4, and
hence, the normal pressure of the laps on the half-plane can be neglected, In other
words, we assume that only tangential contact stresses act on the laps, i, e, they are in
a uniaxial state of stress,

Let us utilize the following system of notation: we denote the displacements and
strains in the laps by the subscript 1, and in the half-plane by the subscript 2, and ana-
logously for the notation of the physical constants of the materials of the laps and of the
half-plane,

Since the law of contact stress distribution under the laps is the same because of the
periodic nature of the problem, the considerations can be limited to one of them, say
that for which 2 = 0. Forming the equilibrium equation of this lap, and then utilizing
Hooke's law, we can establish the relationship
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Here £ is the elastic modulus of the lap material, u(! (x) are the horizontal displace-
ments of points connecting the lap to the elastic half-plane, i, e, points of the segment
[—a, al, and TV (z) are the tangential stresses acting on the lap along the line con.
necting it to the half-plane.

On the other hand, on the basis of the reciprocity law it is known [2] that the horizon-
tal displacements u(® (z) of boundary points of the elastic half-plane, caused by the
tangential contact stresses of intensity 1) (z), distributed over the segment [—a, al

and repeated periodically with period 2/ . are determined by the formula
a

u () = 242 (g !

nk, 2sin [ (z — E)/2] | @ () dg

where v is Poisson's ratio, and E'2 is the elastic modulus of the half-plane,
We hence obtain

dul® { — 2 o - _,
£, = (‘;x — E/v SICLg 1(&21 x) 1@ (§) d§ (1.2)

The integral is understood here in the Cauchy principal value sense.
The condition uW (z) = u® (x) (=0, —a<e<a) (1.3)

should be satisfied on the contact section [—a,a] between the elastic lap and the half-
plane, or if differentiation is performed, the condition
2
du((;;(f) _ du;’;(l') (=0, —a<<e<< a) (1 4)

It should be noted that conditions (1, 3),(1.4) are equivalent, since the constant which
appears when (1, 4) is integrated is zero because the elastic laps are welded to the half-
plane, and hence, they should be displaced together, as one whole,

Substituting the expressions for gy’ and sg) from (1. 1), (1. 2) into condition (1, 4),
we arrive at the singular integro-differential equation

o S otg PEZD (@) ds = —Mp(a) (1.5)
where x Bl
p@= 1@, @) =@ =@, A= g

a
and the integral on the leftshould be understood in the Cauchy principal value sense,
It is easily seen from (1,1) that the function ¢ (x) should satisfy the conditions

Y(—a)=0, Y(@=>~P (1.6)
Therefore, the periodic contact problem for an elastic half-plane reinforced by period-
ically repeated elastic laps of constant thickness A with period 21, reduces to the solu-
tion of the integro-differential equation (1, 5) with a Hilbert kernel under the boundary
conditions (1.6).
Putting
1

we represent the integro-differential equation (1, 5) under the boundary conditions (1.8)
as

e ng ne LA
=t F=s G=q \p<ﬂ/—(P(t)
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2

1

5§ etg 25 g (9)ds = — g () 1.7

cp(—a)=0, p@)=2P (1.8)
The contact stress will now be determined by the formula
, nz

tw=2ey (=) (1.9)

Let us turn to the solution of the integro-differential equation (1,7) under the bound-
ary conditions (1, 8), To do this, let us first invert (1, 7) by considering it as an integral
eanation of the first kind with kernel (271)~ ctg Y/, (s — t) and the unknown function

?'(2) The inversion formula for this equation is known to be (*) [2, 3]

o — -
q)f (t) — A S VCOSS-—COS aP (S) ds A VZ cos 1/2t
2nVoost—cosa 5 SmE—1) Viost —cosa

(1.10)

To determine the unknown constant 4 we integrate both sides of (1, 10) and hence
o

obtain y —e dt
Q(t) = E—_Salfcoss —cosa @ (s)ds S Vst —cesasmihe—0 +

4+ 24 arcsin ——"— sint/at +C

sint/s a
Let us evaluate the inner integral by first representing it as

J(t,s):S I3 =

Vcost — cos asinl/y (s—1t)

1 dt
" VZcos(s/2) S V cos? (1/2) — cos? (/2) [tg (s/2) — tg (£/2)] cos (/2)
Here putting

; tgllgt . th/gS
Totglpa T otglha
we obtam after elementary manipulation
V2 g du
J(t’ 5) ~ ‘sin 1/3@0031/23 "*Vli_“:'_ e (y__u)

But the expression for the last integral has been presented in [4], Utilizing this
expression, and returning to the previous variables, we find

J(t,s)= 1 In 2cos'/ztecoslfy s —2(cosYaaPcostfy(t—s)+ B (2, 5)
’ Vcoss—cos o 2coslfptcostfys—2(costpafcosly(t—s)—B(s)
8 (¢,5) == V(cost — cosa)(coss — cosa) (1.11)
Keeping in mind the expression found for J (£, s),we obtain
t
(1) = S K (t,s)p(s)ds - 24 arcsin S:::lllza +C (1.12)
-

*) In [3] the solution of the mentioned integral equation is reduced to the sclution of
some Riemann boundary value problem, An error was admitted there in constructing
the canonical solution of this problem, which reduces finally to the nonintegral term in
the inversion formula containing sin1/;¢ rather than cos Y, t.
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K(t,s)=J(t,s)Y coss — cosa (1.13)
It is easy to see that K (o, s) = K (—a, §) = 0, (—a < s < @). This latter
condition together with the boundary conditions (1. 8) permit determination of the un-
known constants from (1, 12) A =1Y,P/n, C = Y4P

We simultaneously find the following result; the solution of the integro~differential
equation (1, 7) under the boundary conditions (1, 8) is equivalent to the solution of linear
second~order Fredholm integral equation

sinl/, ¢
sinlya

P (t) == —-—-—SK(t )@, ()ds + L aresin SRl L 2 (114
with kernel K (£, s) being expressed by formulas (1, 13) and (1,11),

It follows directly from the results of [4] (Sect, 3), that the integral operator generated
by the kernel K (¢, s) (—a < ¢, s <{ «) and defined by (1, 18) and (1, 11) is complet-
ely continuous in the space L, (—a, @) ,and transforms elements of this space again
into elements of the same space, Moreover, it is a Hilbert-Schmidt operator, This im-
portant circumstance permits obtaining the solution of the integral equation (1, 14) by
the known method of successive approximation, However, it must be noted that those
singularities which are exceptionally important to clarification of the physical picture
of the state of stress of the elastic laps in the neighborhoods of their ends, and which
characterize the mechanical essence of the problem under consideration in a2 known
sense, are not manifest in such a method of solving the integro-differential equation
(1.7,

In order to represent explicitly those singularities which are inherent to the tangential
contact stresses T (x) under the elastic laps in the neighborhoods of their ends, we pro-
pose another method of solving the integro-differential equation (1, 7) subject to the
boundary conditions (1, 8). This method affords the possibility not only of representing
the singularities in the neighborhood of the ends of the laps explicitly,which is most im~
portant to us, but permits, moreover, finding the values of the contact swess T (z) =
=n/1¢' (#) (t = nz/l)under the laps directly, Finally, this method permits the
construction of approximate values of the contact stress T {x),say the nth approximation,
by passing the determination of the previous approximations and estimating this appro-
ximation,

Now, let us turn to an exposition of the method, The contact stress T () (—a <C
< z < a) equals zero identically for a <C |z| < I, changes periodically with period
21, hence it can be represented as a Fourier series, When using the variable £ this period
becomes equal to 2, therefore we can write

(o9}
¢ () = > + 3| kBycoskt — koysinkt  (—a<t<a) (1.15)
k=1
Let us emphasize that the trigonometric series in the right side of (1,15) is a Fourier
series expansion of the function
0 (—rlt<—0)
f(t) =19 (@) (—esStsa) (1.16)
0 (<t n)
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i.e, oo
J(t) =+ kBycoskt —kaysinkt (—a<t<m)  (1.47)

k=

because of the above, '
Hencewe find @y= P/ xt for the zero coefficient according to the Fourier formula and

utilization of (1.15) and the boundary conditions (1, 8),
Putting

t
Fiy=\f()ds (—a<t<n) (1.18)

and integrating both sides of (1, 17) in the range (—, ¢) we obtain

=]
F(t) =7+t + 3} aycoskt + Bysinkt (—at<n)  (1.19)
k=1
where ¥ is a constant of integration, The method to determine it will be indicated in
the next section,

The function F (¢) is defined only in the interval (—z, s), On the rest of the real
axis we define it by means of a periodic continuation of the function (1, 18) with period
2r . Itis easily seen from (1.19) that this continuation actually reduces to a periodic
continuation of the linear function g () = y + Y3 Pt/n with period 2 , We shall
henceforth understand the function F (£) to be the function (1, 18) continued in precise-
1y this way over the whole real axis,

Taking account of (1, 16) and (1,18), it is easy to note that

0 (—n<t<a)
F@)=1{9® (—a<t<aq) (1.20)
P (@<t <)

Therefore, the expansion

(o]
q,(t)—_-fr+.§%-t+2 agcoskt + Bysinkt (—a<i<a)  (1.21)
holds, k=1
Let us expand the linear function g (f) = y + /3Pt / m continued periodically
over the whole real axis with period 21t , in a Fourier series

g k+1
g(t)y= T+2—};t = T+2P2’ —(-——%—-sin kt  (—altlm)
k=1
Then the function @ (£) can be represented as

co
o) =7+ aycoskt + [Bk — (=) 2 ]sinkt  (—a<t<w) (1.22)
k=1
Let us note that the need for periodic continuation of the function(1,18) results from
the physical nature of the problem being examined. Namely: deformations of points of
the elastic lap with number zero are determined by the function ¢ (nz / )= ¥ ()
(—a < z < a) by using (1. 1), and deformations of the boundary points of the elastic
half-plane __ ] < x < I by the functions F (nx / I) (—1 < z < ) Since the
problem is periodic, the picture of the state of strain of this half-strip should be repeated
periodically with period 2/, consequently, the function F (rtz / I) should be periodic
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with period 2/, and the function F (f) should be periodic with period 2.

Therefore the validity of the representation of the function @ () in the form (1,21)
is well founded,

Let us turn to the exposition of the proposed method of solving the integro-differential
equation (1, 7) under the boundary conditions (1, 8), Let us proceed from (1,10), Taking
account oi the value of the constant A found above, we obtain

) A ¢ Veoss —cosa @ (s)ds Pcosyt
9’ (1) = 27 ¥ cost — cos a S sin Y/, (s —t) 7 V2 (cost — cos o)
(—alt<y)
Substituting the exposition (1,22) for the function @(f) into the last expression, we
find Pcosl/yt ; Y Jo (t) + (1.23)

¢ = n V2 (cost — cos %) | Veost—cosa

oo

b e (Sa0 4 3 [ - 0} cacico

Veost —cosa =,

where «
1 Vcoss —cosa
Jo(t)= o7 S —smve—pn % (1.24)

1 ¢ VY coss — cos a cos k:
J,,(t):EES T ds (k=1,2,..) (1.25)

o

1 Vcoss — cos asinks
27 S sin; (s —1) ds (k=1,2,...) (1.26)

I (t)

These integrals are evaluated below,
For what follows, let us first note that

V coss—cosa =1/, V' 20XP (— *ais) [(¢"* — €% (¢ — ety
sin Vs (s — 1) = — Yai oxp [— Yai (t +5)] (¢”* —e')

Then formulas (1, 24)—(1, 26) become

o R i \
Toty =L it ([ =y e,
I 2 _-& e

. Lz is tay /{8 —{aygYoy, tk8 —iks
Joy="0Xphit (e — ey (e — e e G o hmq 2
L@ 2“,2_51 s (k=1,2,..)
., * is ay ¢, i8 —~iayq1,, ik —~iks
1= exp Yait { [(e’ — el (e 4—e {)t]/(ek — ') ds (k=1,2,..)

2t V2 = e

Let us pass from the segment [—a, @] on the real axis to the arc ga of the unit cir-
cle, whereupon we put et = z, AL s, ot —q

and hence obtain a \a1
. e V% ClC—a)(C—a)]"dL
Jy(—ilng)=J¢ (6) = § L (.27
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NP _ Vs { IC—a@—anl (@
K—ilms)=rr @)= ] Vié_ — g (1.28)

- a . -
I(—ilo) =1+ ()= Yo { Ie=a@—ar¢™ g™
* * 2ni V22 T—s
k=1,2,.) (1.29)
Proceeding to the evaluation of the integral J,*(8), let us introduce the piecewise-

holomorphic function 1 @ [(w — a) (w— )]
CO=20 3T ww—2

dw

with the contour of integration € shown in Fig, 2,

The function [(w — a) (w — @] in this integral is a double-valued function with
the branch points w = @, w = @ located on the unit circle with center at the origin,
As it is easy to see, a single-valued analytic branch of this function can be selected in
the plane slit along the arc Za of the unit circle, Let us select the branch for which
the radical is taken with the plus sign, Henceforth we shall
understand [(w — a) (w — &)]" to be precisely this branch,

v
Then the function
/(,_ ; fw) = v — a) (w — B)]*
! can be represented for |w| > 1 as

fw) =1 + O(™)
! In order to clarify the structure of the function f(w) at the
origin, let us put

w—-a=(a—w)e"i, w—ti=((i--—w)e"i
Fig. 2 Therefore \ .
fw) = — va —w) (@ — w) f2

Hence, by using the expression for binomial series, we find that in the neighborhood
of the origin f(w) = — w £ 0(1)

i. e, the function f(w) has a first order pole at the point w = 0 ,

Therefore, the function f(w) is holomorphic in the whole plane slit along the arc aa,
including the point w = oc (where it has a zero order pole with principal part 1), except
the point w = 0 (which is a first order pole with principal part — w™).

Furthermore, let us use the following result [5], Let the function jf(x) be holomorphic
in the domain D, which is an infinite part of the plane consisting of points located out-
side the closed contour €, with the exception, perhaps, of the finite points as,..., an of
this domain, and also the point w = cc where it can have a pole with the principal parts

Gi(w), ..., Gp(w), G,(w) (the pole can be of zero order at the point w== o ),
In this case the formula
1 f (w) dw

oET S =( (1) = G1(2) = . — G, (1) = Coo(2) (z2 D) (1.30)
C

which is the Cauchy formula for an infinite domain D holds,
Applying the last formula to the function jf(w) = w™f{w — a) (w e &)1 we obtain
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1 [ —a)(w—a)*
2ni : w(w — 3)

dw =

— —an':
O () = le—aye—ay” |

+5-—1 (131
Let us shrink the contour € to the slit Za along the arc of the unit circle, Let us first
find the limit valyes of the radical on the inner and outer edges of this slit, These values

are calculated quite simply in the case of a slit made along some segment of the real
axis, The case of a slit along the arc of a unit circle can be reduced to the case men-
tioned, This is done by mapping the unit circle conformally on the upper half-piane,
The mapping function is A—w

w1 =1 m

For points of the unit circle w = { = ¢¥ (— 5 < s < n). These points are transformed
into points on the real axis by the formula
W1 = Uy = tgl/zs

Hence, it is seen that a slit along the arc @a of the unit circle in the complex w plane
passes into a slit along the finite segment [— tg'/» . tg'/2 @] on the real axis on the com-
plex wi plane under the conformal mapping mentioned, We find simultaneously that

1 14-a a
u—a:—rﬁ(wl—tg%), w—ﬁ=—££—1<wl+tg7> (132)

Assuming wj; -» 11, we will consider that on the upper edge of the slit
wy — tgllo —(tgl/ea — ul)e"i, wy 4+ tglisa — tgliso + uy
and on the lower edge of the slit
wy — tglha — (1gla — ul)e_ni, wy 4+ tglha — tg tha + us

in the segment {— tg'/; @, tg'/:al.

The validity of these relationships is easily seen if the changes in the arguments of the
complex numbers w1 — tgl/so and wy + tg 1/sa are followed as w; — u1.

Taking into account the above, we establish by using the transformation formulas(1,32)
that the radical [(w — a)(w — @)]/s taken on the respective values

if(a — DE — AN, — il — HE — A"
on the inner and outer edges of the slit along the arc aa of the unit circle, or keeping in
mind that i = 1 ¥V — 1, the values

—E—a) C— D, 1§ —a )t — B (<€ aa) (1-33)

Taking into account the values (1, 33), let us shrink the contour € in (1, 31) to the slit
da (*). We obtain

{ (—2g—a)g—at  G—a)E—al" 1
TmS {=n) = z 71t

a
Hence, 2pplying the Sokhotskii-Plemelj formula, and again utilizing the values (1.33),
we find that to the left and right of the slit as z—o , i, e, as the point 2 tends to the
point s of the inner or outer edges of the slit, the following relationship holds

*) Since the integrand is on the order of O ((w — &)’ and O((w — a)¥¥), respectively,

on the ends 2 and e of the slit, the integrals taken over small circles will tend to zero
asp—0.
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G—a)@g—aghay _, 1
T —09)

Therefore, the integral J,*(s) defined by (1.27) is
Jo* ) ="hi VB(1—37)
Putting ¢ = e¥ we obtain the expression for the integral J(t)

L
.

Qa

-
Qle 0

Jo(t)=— V 2sinat (1.34)
Let us turn to the evaluatmn of the integrals (1,28) and (1, 29), Let us introduce the
notation a) g__a)]'/z k-1
X @)= 57 S[(C (5—5 & dg (k=1,2,.)

ﬂl

We will then have _
J*©Y =1 V2 [X)(6) + X _x (9)]

_ (k=12,...) (1.35)
Iy* (6) = —Yai V25X () — X_x (0)]

Let us consider the p1ecew1se holomorphic functions
— a) (w — &)] "

q')k(z)— 2ni ¢ = (w—z dw

(k=1,2...)

[(w —a) (w — )]

O_k(z)— ol § "*l(w—z) dw

where the contour of integration C is as before,
Let us investigate the analytic properties of the functions

fw) = [(w — a) (w— @) k1 (=1, 2..)
where, as before, the radical is taken with the positive sign, It is easy to see that in the

neighborhood of the origin these functions are holomorphic, In order to clarify the struc-
ture of these functions for large w, we represent them as

fr () =" (1 - —z—)% (1 — —Z—)l

It is easy to establish, by multiplying the binomial series which are power series expan-
sions of the square roots entering here, that for Jw| > 1 these functions admit the repre-

sentation
Iy w) = 2 (— —2 (—)"C wk + H (w)

n=0 n=0

Here H (w)is a holomorphic function at oo

c __Z Cl/(p)cl (n-p), Pgn-p
=0
It is easy to show that
C,=C, = \ C,/’(p)C,I’("”’) cos(2p —n) a
=0
Therefore, the functions j,(w) (k= 1,2...) are holomorphic in the whole plane slit
along the arc da of the unit circle, except at the infinitely remote point which is a pole
of order £ with the principal parts k
G, P(w) = 2 (— 1*C Wt (k=1,2,.)

n=0
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Similarly, it is easily shown that the functions
[0 — a)(w — a)]'"2
[y ="y (k=1,2,.)
are holomorphic in the whole plane of the variable w slitalong the arc aa,with the excep-
tion of the point w = 0, at which they have a pole of order k with the principal parts

k (_ 1)n+lc

6 ()= 3 5
n==0
Taking into account the mentioned analytical properties of the functions f; (w) and
fx (W) (k == 1, 2,...) and applying the Cauchy formula (1, 30), we find by a method com-
pletely analogous to that expounded above for the calculation of the integral J,*(s) that

k k
X @)= 3 (—1C " X @)= ) ()0 (k=1,2,.)
n=0 n=0
Using the last formulas, we find expressions for the integrals Jy*(s) and Ix*(s) from
(1. 35), and then the following expressions for the integrals Jy (¢) and Iy () from (1,25)
and (1.26):

J (‘)_-——V:Z (— O™, sin(k—n+%)¢
",‘“0 (k=1,2,..) (1.36)
= (—1)"C cos(k—n 1)1
k(t) .V <, (

n
c.= 2 C,/fp)C%(""p) cos(2p—n)a, (1.37)
=0
Before turning to the solution of the integro-differential equation (1. 7) under the bound~
ary conditions (1, 8), let us evaluate the coefficients C,, in the formulas presented above,

We find directly from (1, 37) c 1. ¢ cos o
o= 1, 1=

The remaining coefficients C,, are easily evaluated as follows. Let us consider the
function hw) = [(w — a) (w — &)
where the radical is taken with the positive sign, The single-valued analytic branch of
this function is thereby selected in the plane slit along the arc ge of the unit circle, It
is easy to show, as above, that o

h)y=— D (—=)"C ™ (w]<1) (1.38)
n=0

h(w)=w 2 (—1)" (w1>1) (1.39)
n=0

Let the counter-clockwise direction be considered the positive direction on the unit
circle, Let k, (6) denote the limit values of A(w) when the point w tends to the point &
on the unit circle from the left, and h_(s) the limit values of this function when the
point i tends to the same point ¢ from the right, Let us form the difference k, (6) —
~h_ (c).Since the function k(w) is analytic on the whole unit circle except the slit along
the arc da, then this difference will vanish for all points « of the unit circle not belong-
ing to the slit, Let us find the values of this difference on the slit along the arc aa. To
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do this, let us utilize the values (1, 33) of the radical on the inner and outer edges of the

slit, We obtain that
ho(@—k ()=2V{5—0a)s—8)  (sE€aa)
Therefore —
by (3)— h (G)={O, cE da
* - —2 V(c——a)(c—d),cse da

On the other hand, we obtain from the expansions (1. 38), (1.39)
nHte,
B (@) —h_ (c)——[z (—1)°C " + 2 (1)
n=0

Comparing the expressions obtained for h, (5) —k_(s) by the two methods, we discover

et E} (=)™ + _% (—1)"c1-"={ 2V =a@—a), S
n—t 0 0, & da
Putting 6 = e¥, a = ¢ we will have
oo . J—
2 dke"‘t =)= ( 2exp(Y2it) V2 (cost —cosa) (—a < ¢ < a) (1.40)
oo 0 (—rtaltln—a
where we have used the following notation:
dy = Cy — C1, d=C, —C1
= (=1 € (k=123.), (=0, (k=12,.) (1.41)
Furthermore, let us expand the function q(f) in a Fourier series
(o}
q(t)_—; 2' qkeikt (1’42)
k==—o00

For the Fourier coefficients

0= S ™
we obtain the expressions
__ Py_y(cosa)— P, (cosa)
L 2k —1
where P, (cos a) are Legendre polynomials,
Substituting its Fourier series expansion (1,42) into (1, 40) instead of g(tf) comparing
coefficients of e%! | and utilizing the notation (1, 41), we find
_ k Py_g (cosa) — P, (cosa)
Ce=(=1 o
Let us note that the coefficients C, and C, are not themselves determined by this means;
only their difference has been determined,
We therefore have
Co=1, Ci=cosa, Cn=(—1)

(=0, 41,4 2,.)

(k=2,3,..)

o Png(cosa)— P, (cosa)
2n —1
Now the solution (1, 23) of the integro-differential equation (1, 7) with the boundary
conditions (1. 8) can be represented after the expressions (1. 34) and (1, 36) have been
substituted for the integrals Jg (¢), Jp (¢) and I (8) , as
q), (t) —_ P cos 1/2 t . 2Aysind/y t .

nV2(cost—cosa) Y 2(cost— cosa)

(r=23,.) (1.43)
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o0

A {2 akz (—D*Cpsin(k —n -+ 1Y)t —

VZ (cost —cosa) L= " T

k
2P
- 2 [Be— D' ] 3 (A Cucose—n e (acicn (@49
n=0
where the coefficients C, are defined by (1, 43).
According to (1, 9) we finally obtain the following formula for the contact stress. T ()
under the elastic laps:

_n . az P cos (niz [ 21) _
T(x)——l—(p < l ) lVZ(cos(n:c/l)’cos(na/l))
2nhy sin (nx [ 21) An X
" Y32 (cos (nz/ l) —cos(na/l) LV2 (cos (nz [ Iy — co8 (na ] 1))

{2 %2 (—1)" Casin {(k—n+ ) ] — (1.45)

—Z[Bk—< —)" 2”@<~1>"cncos[<lk—n+§)i‘f—}} (—a<s<a)

Therefore, the law for contact stress distribution under the elastic 1aps glued to an
elastic half-plane and repeated periodically with period 2! is determined by (1,45) if
the coefficients qjand B, are known, As will be proved in Sect, 3, those singularities
which characterize the state of siress of the laps near their ends are explicitly extracted
out in this formula, It will be proved in Sect, 2 that the definition of the coefficients
ap andf , reduces to the solution of two separate infinite systems of linear algebraic
equations with bounded forcing terms, It will be shown there that these infinite systems
of linear equations will be completely regular for

E,l

sox B AT ImA—wRE
and quasi-completely regular for A / sin a > /g5 . Therefore, it is possible to rely on
the theory of regular and quasi-regular infinite systems of linear equations with bounded
forcing terms, and to assert that the coefficients @ and B, can be determined to any
required accuracy,
Let us note that when A == 0, the elastic laps are replaced by rigid ones, i.e. by
stamps, and (1. 45) reduces to the known formula from [2].

2, Derivation and investigation of the infinite systems of lin-
ear equations, Let usreturn to (1.44) in order to derive the infinite systems of lin-
ear equations in the unknown coefficients a and f§ ,, Substituting its Fourier series expan~-
sion (1, 15) in place of @’ () in this formula, and keeping in mind that ay = P / =,
we hencg.o ~obtain

_I;_ + 2 m (B,, cos.mt — a.,, sin mi) =

m=1,

Pcoslfpt N 20ysin/at
Y 2(cost — cos a) V2(cost——-cosa)

o] k
A {2, g D) (—1)" Cosin(k—n +Y3)t —

V2(cost—cosa) Loy oy

[ k
—2[ — (=1 ZP]Z("’1)"Cn¢°3(k—n+‘/s)t} (—a<t<a) (2.1)

k=1



Periodic contact problem for a half-plane with elastic laps 803

Now, let us note that the sum of the series on the left side of the last equality should
vanish identically in the intervals (—a, @) and (@, ), as is obvious from (1, 16) and
(1.17), Therefore, for the Fourier series expansion of the whole right side of(2.1) defined
only in the interval (—a, a), it must be continued in the remainder of the interval
{—, ) by a function identically zero, Taking this fact into account, let us introduce

the functions 0 A<t<C —a
[} i A -
— cos (p + o)t . - 2 9
gp(t) Vot —coes) agiKa (r=0,1,2,..) (2.2)
0, altgn
0, —_nCtl—a
hy(f) ={ S+t — . 2.3
PO =) Voo —emy SIS =012 (2.9)
0, altgn

continued periodically with period 21 over the whole real axis,
By utilizing these functions (2,1) can be written as

oo
P . Pcosifpt
P m cosmi —a,sinmit) = e -
i 2 m (B " ) 7V 2(cost — cos a)

m=1

o0 K
. 2iysintpt gy B
V2 (cost — cos 2) x{éfk.g})( 1)" Cphyn (2)

o k
i ; 2P
= 3 [Be— (D ] D () Coren (0} —a<i<m (24)
k=1 n=0 .
Furthermore, the functions gp (f) and %, (¢), which are even and odd respectively,

are expanded in the Fourier series
fes]

Co® i .
8y (t) = 5—+ 2 CaPeosmt,  hy(t) = X D, Psinmt (—a<i<n)
m=1

m=1

whose coefficients are defined, according to (2,2) and (2, 3) by
o
2 { cos(p+ Ye)tcosmt |
C @ = —"S P e—— dt == . .
m VZ{cost —cosa) (m=0.1,2,...)

Fi 4
0

[: 4
2 ( sin{p-}Ys)tsinmt
D"”=——-S PR At (m=1,2,.
" ™ V2 (cost — cos a) (m=1,2,...)

Utilizing the formula [6] @
P,{cosa) = —i—S

0

€os (v - Yz}t dt

Vz {cos t — cos a) O<alm

for the Legendre function of the first kind of order v we obtain at once
Cn'® =1/3 [Ppim (c0S@) + Pp_pm (c0sa)], Dy =1/s [Pp_m (€08 @)— Pp, m(cosct)|
Therefore
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P, (cosa) L i pem (€OS @) + Py (cosa)

gp(t) = 5 5 cosmi (p=0,1,2..) (2.5)
m==1
< P cosa)— P
hy(t) = D) pom u)2 pim (€052) sin mt (2.6)
m=1

Substituting their Fourier series expansions from (2, 5) and (2, 6) for &x-n (¢) and
big—n (t) , Tespectively, in (2, 4), we obtain after simple calculations

©0 [s+]
. 1 : 2P
2 m Bmcosmt —omsinme) = - 3 B — (—1)' =] x
m=1 k=1
X 2 (—1)" CaPin (c03) + - 2 n Ot P €022 st +
n=0
o P _
+ 20y D) m (005%) 5 Pomlcos®) sinm¢t —
m=1

k

A S [D o D (e, Demn 0T P €0 |y

m=1 k=1 n=0

o] (o]

2 [2 <Bk"" (—1) =~ 2P> 2( H'c, Prim-n (005 a)gpk‘m‘"(cos a)J cos mt}

m=1 "k=1 n==0
(w2t

A comparison of the coefficients of cos mt and sin mt¢ on both sides of the last
equation results in infinite systems of linear equations

k
2P n
z [Bk—< —~1)" 22| 3 (—1)" C.Pyn (c0s0) = 0 @7
n=0
p P (cosa)+4 P_,, (cosa)
mBy, = — = 5 + (m=1,2,..) (2.8)
© k
2P 1 0 n Primn(COSX) 4 Py . (cosa)
+ 2 ) B — (=) == | X (—1)"C, n
2| 12 2
ma,, = A7 [P_m(cosa) — P, (cosa)] 4 (m=1,2,...) (2.9)
[} k
P, . _.(cosa)— P, . __(cosa)
'A.—‘CX __1116" k-m-n k+m-n
T él kéo( ) p)

It is easy to note that the infinite system (2, 8) corresponds to the skew-symmetric
part of the contact stress under the elastic laps, and the infinite system (2, 9), to the sym-
metric part of the contact stress,

Let us prove that k (2.10)

Z (—1"C, Py, (cosa)=0 for 0Ca<m k=12,

n=0
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It will hence result directly that (2,7) will be satisfied identically for any coefficients
By , and therefore, imposes no constraints on these coefficients,
In order to discover the validity of the identity (2. 10), let us note that according to

(1.26) and (1.36) « ., k
1 Vcoss—cosasinks 5o 1 2' (—1)°C, cos (k — n 4 Vo) ¢
2n J sin Vs (s — 2) V2 &,

(k=1,2,..) (—a<lt<La)
2
Multiplying both sides of this latter by
between — a« and @, we obtain

————————  and integrating over ¢
7 Ycost —cosa 8 8

a t=a k
iz i sin ksK (¢, s) ds = 2 (—1"C, Py_n(cosa) (0 < )
n __:q t=—a n=0
k=12,..)

where the kernel K(t, s) is defined by (1.13) and (1.11). Keeping in mind that
K—a,s) =K@, =0 (—a<s<)
we obtain the identity (2, 10) from this latter equality,

Let us note that the equality (2, 7) expresses the equilibrium condition of the elastic
laps, Indeed, by integrating both sides of (1, 44) between — o and & and utilizing the
boundary conditions (1, 8), we arrive at (2,7). On the other hand, if the expansion (1.15)
is substituted in place of ¢’ (#) into the same formula (1, 44), and taking into account
that here oy, = P / m, and then both sides are integrated between — « and a, we will
obtain o
2 D) Bysinka=P(1 —afn) (2.41)

k=1

It follows from the above, that (2,7) and (2, 11) are equivalent, Therefore,(2,11) is
also an identity, and imposes no constraints on the unknown coefficients,

Let us now try to satisfy the boundary conditions (1, 8) by starting from the expansion
of ¢(t) defined by (1,21), We then obtain (2,11) as well as the following equality :

(o4}
7:%—-2 a, cos kx (212)
=1
This latter equality permits the determination of the constant ¥ if the ay are known,
Therefore, the relationship (2. 12) will be some equation from which the constant ¥ can
be determined,
This constant has a simple physical meaning, To clarify this meaning, let us integrate
both sides of (1, 19) in the interval (—mx, =) and let us take (1. 20) into consideration ;
we hence obtain a

1= [P+ { 9]

orputting ¢t =nz /1, la/n=a

T=—§—(1.__—‘;—>+-21[_ § ¢<"I_’)dx 2.13)

On the other hand, according to (1. 1)

dul _ ¥ (z) _ @ (nz/l)
de % kB hE
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Hence

x

The constant ¢ characterizes the rigid displacement of the system of laps-half-
plane. It follows from this last formula that ¢ = ufV (— a),hence we will have

[$3

W) — uW(—g) =1 nz
utt (a) — ut’ (—a) RE, S (p( 7 )dx
-

Substituting herein the expression for the integral from (2, 13), we obtain

2y + P)l | Pa
M (a) — D (— g) = (____’#‘___
We hence conclude that the constant y determines the displacement of the right end-
points of the elastic laps relative to the left ends of these same laps, Its approximate
expression will be given in the next section,

Let us turn to an investigation of the infinite systems of linear equations (2, 8),(2. 9).
Let us represent these systems as

Gy = M+ A D) Ayt

(2.14)
o (m=1,2,..))
b = €m + A D) Brhy (2.15)
where . =
Ak = 5 2 (—1)" Ca [ Promon (€03 @) — Piumn (c059)]

n

|
=

(m, k=1,2,..)

1
Bmk = 35
n

MR‘

(—1)" Cp [Prim—n (COSA) -+ Py_m—n (cOSA)]

(=]

(m k=1,2,...)
A = MOy, by = mBy, dp=P.m (COSG) — P, (COS(Z) (m=1,2,..))
[>0]
em = TZPE [P (c0sa) — P_m(cosa)] — 2PA 1§1 (—15kBmk (m
Let us note that the infinite system (2. 8) can be represented in a form in which the
coefficients b, — (—1)¥ 2P in (1,45) for the contact stress, will be the unknowns, An

investigation of this infinite system will be no different from an investigation of the sys-
tem (2. 15).

=112|-..)

Let us turn first to the infinite system (2. 14), To investigate it, let us estimate the sum

Sn=A2 |Am| (m=1,2..)
k=1
We have
[o'e] k
1 n
Sn=5 2 5| 2 (~1)" CalPrmon (003%) = Prrmon (cos@)] | <
k=1 n=Q

n=0

) o x
<%[}§1—;‘2 [Call Pr-m-n(cosa)| + gl—;— 2> |C,,||Pk+m_,.(cosa)|] =

=0
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P
= _g—[z w+ 2 "71‘— 2 IcnllPk+m-n(cosa)|+

k=1 k==1 n=1

4 3P S S0 P tcosa]

k=1 n=1
Interchanging the orders of summation in the repeated sums, we obtain

S, (\%[2 } Py (cos a} Z ]Pk_m(cosu)[+

ol k k
el oo
' | Pyonn (COS Q)] | Py (COs )
31001 3 Lrmn 50 ) 31 Prnen sl
n=1 k=n n=}1 k=n
Introducing the notation
- | oy (COS ) | < | Py, (Os &)
T (@) = ) _"'_"_x__._._.., T-m(a)=2——"—-'1‘ik-—~—-|—
k=1 k=1
| P {cosa)] | Pp_m(cosa)l
Rm(n) Prmep\™m 21 R — m —
() = g —mE—— ., RO = 2 L (ma=1,2..)

we represent the last inequality as
7«.
Sn <5 [T (@) + Tom (@) + S 1Cal (B @) + B @] (@18
n==1
It can be shown that the quantity Sy, will satisfy a condition for which the system
(2.14) is completely regular,
Let us first estimate each sum in the inequality (2, 16) separately, To do this, we use
a known result of [7]: the inequality 5\ 1
P_(cos — — . -
1P, ( ot)|<(ﬂ> Vasmna O<agn n=1,2.)
holds, Let us note that the constant ¥ 2/ a cannot be replaced by a lesser one, For
simplicity of the computations and of the formulas obtained later, let us replace this
constant by unity, thereby asserting that the following inequality holds

1
| P, (cosa)t<‘m~ O<aln n=1,2.) (2.17)
Utilizing this inequality we find
G 1 1 31 & (%)
T (@) < Y sina kz_'l kVk+m < Y sina ,‘2=1 K Vsina
Here {(z) (z > 1) is a Riemann function {6, 8],
Thus, the following inequality is valid:
L0 (m=1,2,..) (2.18)

T ( )< Vsma

In order to find a more accurate estimate for the sum Ty, {) let us note that
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e}

1 1 1

fee]
Vsina }\2}1 kVE+tm <Vsina (Vm+1 g me+z)
Computing this latter integral ( [6], formula 2, 246), we obtain

1 1 1 VmFi4+Vm
re<var (e TR e )

It is easy to show that

=1,2,..) (2.19)

lim 1 Vot i4Vm
ml—?go E VW“V’; o

1 Vm+i+Vm
V.m] Vario Ve <A (m=1,2,..)

After performing elementary calculations, this latter inequality becomes
mA4d<Ye(d +chdVm)
Substituting herein the power series expansion of the function ch4 V?E,we arrive at

the inequality A2 \ Atm? A%m?®
[ = 1) m+ T + g+ 30

Therefore

4
It is hence seen that for nonnegativity of the right side it is sufficient to consider that
Y44 — 1 >0, or 4 >2

Therefore, the inequality
A YVt t¥Vm <2
Vm Vm+1— Vi
has been established,
Let us now estimate the sum 7_,, (@). Using the formula P_, {cos @) =P, _, (cos a)
known in [6], as well as the equality Py(cos o) = {, we represent the sum I'_,, (@) as
follows ,_. 0o

(m=1,2,..) (2.20)

Py (c0s2)| | Pim (c0S2) | 1 1
T n= 2 | lc + 2 P ta—ttw =23
k=1 k=m+1
Let us replace &k — m by % in the second sum on the right, and let us then apply the
inequality (2, 17) to the first two terms, we hence obtain (2.21)

1 1 1 1 1
Tm < oma L-z'lk Vit 2 Grm V;:]“Lm-ﬂ tw 29

Furthermore, let us estimate the sum

m—1
2 ka—k (m=2,3,...)
To this end, let us note that
¢ 1 {  Vm 4+ Vm=i

1 dx
H | - o 2
"‘<V7n—:—_1‘+1 a:]fm—-x Ym—1 V Vm—]/m—-i (m>2)
We have for the second sum on the right side of inequality (2,21)

o ed
‘ i 1 S" dx
él(k—pm) Vk <mF1 +i (m+2)Vz
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or after evaluating the last integral ( [6], formula 2,246)

St w2
k..-—.'l(k-i-m) VE ~m+17 Y™ Vﬁarc g_i/_m:

Using the deduced inequality, we obtain from (2,21)

1 1 Vm—1 4 Vm—2 2 1
T =
0 < o [T Vin—i—Vm—z ¥V  ®Vat
7 1 1
+va+ym+m+a}+m_a +§' (m >3) (2.22)
Utilizing the inequality (2. 20), we obtain from (2, 21)

3
e L

A separate examination of the sums 7_; (@)and T_, (a) leads to the inequalities

m=3, 4, ..)

_ECkR) _ECh)
1
Tae<t e Vsina ° 2(a)< T Vena Ysina
A comparison of the last three inequalities shows that
5 3
T (< g+ V-ts%?/?) (m=1,2,..) (2.23)

By methods completely analogous to those elucidated, we obtain the inequalities

1 1 1 Vm¥Fi+Vm )

e — = ln = m, n==1, 2, ...
Fr v v Ve o ve) ™)

R 0< !

s o

; (2.24)
1 .
) —_— = —
R (a) < T [1+g (2)] (myn=1,2,..) (2.25)
1 1 Vm—14Vm-—2
n) = tg —=
RO ) <o <Vm~—-1 =T V=2 V are gV +
2 1 1 m=3, 4
+Vm -{_Vm—t—”"{‘1)4—;.‘-—".:-i-*-_—"’T (’*=1.2,--~) @20
() EAY IS -
R™(5) <~ Vs [ +t (z)ﬁ's (m, n=1,2,..) (2.27)
Finally, by using (2, 17) we obtain estimates for the coefficients C,
1 i 1 1
!021<§<1+W). [Cnl< Vona (n—2)
=3, 4,...
The latter inequalities permit us to write (v )
- . 1 )+ 4Vh) (2.28)
2‘ 1Cnl< Vsina T3 ( +V25inct Vsina '

n=1
Taking account of (2, 18), (2. 23), (2. 25).(2 27) and (2.28) we find from (2. 18)
Aot + 3 3/ 3 -
Sn< AL [Vz 13 +(m Vz )g ( 2 )+36§ (Tﬂ(m__i, 2, )

In order for the infinite system of linear equations (2, 14) to be completely regular,
it is necessary to satisfy the conditions [9]
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8, <Lo< (m=1,2,..)
which results in the infinite system (2,14) being completely regular for values of A
satisfying the condition

: 2N (Bhn (3]
. <36[V, + 181 4 (171 + V2)§< 58 (3 ]
Substituting { (3/;) = 2.612 [8] in the nght side of this inequality, we represent it
after simple manipulations as
sin T < —2—5_ (2.29)

Therefore, the infinite system of linear equations (2, 14) is completely regular under
the condition (2,29),

The proof that the infinite system of linear equations (2. 15) is also completely regular
under the same condition (2, 29) is no different than that presented,

For other values of the parameter A the infinite systems (2, 14) and (2. 15) are quasi-
completely regular. Indeed, after some simplification of the expressions in the right sides
of the inequalities (2. 19), (2.22), (2.24), (2. 26) and (2, 28), the inequality (2. 16) becomes

S G m=3,4..) (2.30)

V%ma
. 2 VmFi+Vm | 4 Lo 3 9 34
Gm—Vm—ll Vm—Li-—V’m—} Vm—2 ' VEer—i { )

Since lim G,, = 0 as m — oo, the right side of (2. 30) can be made arbitrarily
small for any A for sufficiently large m, This circumstance certainly permits the assert-
tion that both infinite systems of linear equations (2, 14) and (2, 15) are quasi-completely
regular for A 1

’ Sinz ~ T
where a number /V can be given exactly for which the mentioned systems start to be
completely regular.

Since the forcing terms of the infinite systems of linear equations (2, 14) and (2, 15)
are bounded as a set, or more accurately, tend to zero as the velocity O (m~"), then
according to the theory of completely regular and quasi-completely regular systems [9],
they have unique solutions in the class of bounded sequences, These solutions can be
obtained by successive approximations, by starting from any bounded initial values in
the set, They can also be obtained by the method of reduction, After theaand by
have been determined, the coefficients o and § 5 can be found by means of the formulas

a b
a’\‘ = ""]2.'5“ ] Bk = _k,s'

If af” and by are approximate values of the coefficients ayand b which approach
them as n —» oo then the approximate values o and ﬂ(") of the coefficients a, and
B4 can be-determined from the formulas

(n) .

(n) b, (n)
a,
y B (n) =

Let us note that a$ and b can be successive approximations or solutions of the
truncated systems of a finite number of linear equations when the method of reduction
is applied to the infinite systems (2. 14) and (2, 15).

In conclusion, let us note that more exact estimates could be obtained, However, this
would complicate the structure of the final formulas,
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3, Investigation of the state of stress of the elastic laps, We
precede the investigation of the state of stress of elastic laps by elucidating some results
which will permit, on the one hand, giving a foundation to the formal operations per~
formed above, and on the other, verification of the validity of the analytical Fourier series
apparatus utilized here, First, let us explain the question of the convergence of the tri-
gonometric series encountered in the previous sections, Second, let us examine the fol-
lowing important question, The coefficients aand @, which are used to form the trigo-
nometric series for the functions @'(Z) and ¢ (£} are determined from infinite systems
of linear equations, There is no advance guarantee that the coefficients o, and f§, thus
determined will be Fourier coefficients of some function with specific properties, Ques-
tions of the existence and determination of functions having a previously assigned
sequence of numbers as the sequence of Fourier coefficients are among the known trigo-
nometric problems of moments, However, existing criteria from this area are unsuitable
in practice since they do not permit any verification in specific cases as to whether for
a given sequence of numbers such a function is of a definite class which would have this
sequence of numbers as its Fourier coefficients, The clarification of these questions for
the considered trigonometric series turns out to be elementary and based on the estimates
of their coefficients,

Let us proceed to estimate the coefficients. To do this, we write the infinite systems
(2.14),(2,15) as

3-8
= Ayd,, m‘f=“5—¥~7\.2 Am,‘( ) Te (3.1)
k=1
6 = Ly m‘[,—& “L A 2 Bmk ("’*“) /‘—a k (3.2)
k=)

T == amm‘lz“ﬁ = m’hd Oy bm = bmm‘/r'b = mh-3 Bm (m=1,2,...)

and § is an arbitrarily small positive number, Let us estimate the sums

. § m o Yed
m::x]g:llAmk'(T) (m=1, 2,...)

We have ”
e —8
Ym< Am™ Z | Ay |
k==1

Taking into account (2, 30), we can write

3am's —®

Vo < —7—= Vona Gn (m=3,4,..) (3.3)

Using L'Hopital’s rule, it is easy to show that

im - 1 Vm+1+Vm
m-co M Vm Vm

Taking account of the last equality and using the expression for Gm from (2, 31), we

=0 (3.4)

conclude that lim Voo =0 for m — oo (3.5)
In order to obtain an estimate independent of m for Vi , let us note that because of
3.4 A, Vm¥i+Vm

=1,2,...
W VRl va F (r=bhe)

Hence, as in the derivation of the inequality (2, 20), we obtain
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sz25 K4mti8 K‘}f\'m2r'i‘5
m<g 5.7 +W++W+ (.6)
It is easy to see that
K228 gk ki

SERT 2 TR (r=12), g=E@3™)
Here E(r) is the integer part of the number «. Let us select k so that
K2k big
W>m (m=12,..)

It is evidently sufficient to consider k = ¢. Therefore, if
K > [2-@qN"1
then the inequality (3, 8) is satisfied, Therefore

Voti+Vm f
5 In VmEi— V5 S L= [2-(2q) V2 (m=1,2..) (3.7)

Utilizing the inequality (3,7), we find by using (2, 31) (*)
Va<AV/Vsina, V=3(LV6+4V3+a+V3) m=t,2..) (3.8)

Putting AV
=2
Vsina (3.9)
we find that @ < 1 if A satisfies the condition
A 1
Rgpvoremm— T .1
Vsina <7 (3.10)

Therefore, if condition (3. 10) holds, then the infinite system (3, 1) is completely regu-
far, but in the opposite case it is quasi-completely regular, as follows from (3, 5), This
assertion is evidently valid for the infinite system (3, 2) also.

Furthermore, it is easy to find that

oo s
ol < M0 |+ 2 D) A ] () <
k=1 ~

<My |mhd ) dy |+ MV, (m=1,2,...) (3.11)

The fact that |Ya|<<M (& = 1,2,...) has been utilized in deducing this inequa-
lity since according to what has just been proved, the infinite systemn (3, 1) of linear
equations is completely regular or quasi-completely regular, and therefore, has a unique
bounded solution,

Taking into consideration the inequalities (2, 17) and (3, 5), we find from (3, 11) that
lim y,, = 0 for m — oco. Analogously, it can be shown also that lim 8, = 0 as
m —» 00.

This latter circumstance permits the assertion that

A, = 0 __..!_._.. B —0_1__
m md | m <m'/z—5

This means the following formulas also hold

1 1 .
Oy == 0(W> . Bm = 0(;:5];-—8-) (3.12)

*y For m > 3 this inequality is obtained from (3, 3), But it also holds for m=1,2.
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Since the coefficientsa,, and B, are quantities of the mentioned orders, the trigono-
metric series in (1, 19) converges absolutely and uniformly, There results from just the
uniform cenvergence that this trigonometric series is 2 Fourier series of some function
F (t) — Y, Pt ]/n. Wedenote it by @ () — /3 Pt /s in the interval (—a, a) .
Therefore,the function @ () (—a < ¢ <{ a), continued into the interval (—x, ) by
means of (1, 20), is represented by the Fourier series (1,22),

Let us investigate the convergence of the trigonometric series obtained by formal dif-
ferentiation of the Fourier series (1,22), i.e, the series in the right side of (1, 15).

The coefficients o pand P, of this series are determined, as has been shown, from the
infinite systems of linear equations (2. 8),(2. 9), whose derivation is based on (2, 1),
Therefore, convergence of the trigonometric series (1. 15) is equivalent to convergence
of the series in the right side of (2, 1),

Furthermore, let us introduce the notation

o0 L
D (t) = D oy D (—1)" Cosin(b—n+ Yy)t — (3.13)
Ka=1 n==9
o k
—_ 2 Be D (—1)"Cpcos(k— R+ 1Y)t (—agKt<<w)
h=1 n=0

k

2P — A Chcos(k —n -+ Y,)t (3.14)

n=0
Taking (3. 12) and (2, 28) into consideration, we discover that the series (3, 13) conver-
ges absolutely and uniformly in the segment [—a, o] and therefore its sum @ (t) isa
continuous function in this same segment,
Returning to the series (3, 14), let us intergange the orders of summation, and then let
us use the known formulas [6]

o (— 1) sin ke t & (— 1)F cos kt 1 .
¢ ):m S ZL_)}EQE_=1HM(_R<:<R)(3.15)

k=1 k=1
After having performed elementary calculations (3.14) becomes

\F(t)_“zpcos {lnlcosl/t+ 2 ("‘1) C [COSnt 2 (.___.__1 cos kt +
—P—Smntzg_ﬂ_ﬁﬁff_-{}_%_gpsm__{jz&_ (3.16)
o] __1\k . 1 E Kt T
.__gl(—- 1)" Cﬂ. [cosntyzl(_“&)"/’fﬂ slnntkg;( ):05 l]}

Since the number sequence Uy = (— 1)¥ k-1 will be a sequence of bounded varia-
tion’i'e‘ iAuli—*“ }Auzl + IAE‘gi + ...< o0 (Auk - uh — uA._l)
Hence, the series (3. 15) converges uniformly [10] for & < [t| < &t (e is an arbitrarily

small positive number), For { = 0 they evidently simply converge, It follows from the
above that
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lOI< K, OI<E  o<i<n
D (— 1) cos kt o (— 1)" sin &t
mi)= 3 EEEE =2 ==

On the basis of the last inequalities and inequalities (2, 28) we see that a series of the

form oo

[ o]
cos ni (— 1)f coskt
7

2 (—=1)"Ca p nt Z %k  sinkt
=1 K==n
converges absolutely and uniformly in the interval (—, %), and therefore, also in the
segment —o < ¢ <{ 0, Hence, the function ¥ (¢) is continuous in the segment
[—a, a].

Therefore, it has been proved that

& <]
N T R
P (t)=— +,§1 (B cos kt — o sin kt) Vitmi—orm (<'3a1)7)

Here the function
% (t) = Pn-t cos Yyt — 20y sin Yyt — A [D (¢) — ¥ (¢)]

will be a continuous function in the segment [—a, al.

It follows from (3, 17) that the function ¢’ () is absolutely integrable in the interval
(—a, &), This ytelds a foundation for the assertion that F (f) from (1.18) is an abso-
lutely continuous function in the interval (—%, %), But according to (1.20), F (f)=
=@ (f) for —a < £ < a. Therefore, the function @ (f) {—a < < a) will also
be an absolutely continuous function represented by the Fourier series (1,22), There
remains to utilize the following resuits of [10] to see that the series (1, 15) is a Fourier
series (*) for @’ (£), The trigonometric series obtained by formal differentiation of the
Fourier series of an absolutely continuous function is the Fourier series for its derivative,
Therefore, a foundation has been given for the Fourier series of the function ¢ () from
(1.22) to be differentiated term by term, and for 2 Fourier series representing the func-
tion ¢’ {f) to be obtained again,

Turning to the investigation of the state of stress of the elastic laps, we recall that
the contact stresses are determined by (1, 44), or more exactly, by (1.45), This formula
has been represented in the form (3, 17) with clearly isolated singularities which charac-
terize the state of stress of the elastic laps near their ends, It is seen from this formula
that the contact stresses at the ends of the elastic laps become of integrable order at
infinity, Simultaneously, the presented analyses permit the assertion that the law of con-
tact stress distribution under periodically repeated laps has an-analytical structure such
that the singularities inherent in the state of stress of the elastic laps near their ends are
of the same kind as in the case of periodically repeated rigid stamps, Therefore, the
assertion that singularities characterizing the state of stress of the elastic laps near their
ends are explicitly extracted in (1,44), which has been expressed in Sect, 1, has now
been given a complete foundation,

*) More exactly, we speak here of a Fourier series for the function f () defined by(1,8).
which agrees with the function ¢’ () in the interval (— «, @), This remark also refers
to the functions F (¢} and ¢ (1)



Periodic contact problem for a half-plane with elastic laps 815

Let us note the following, The coefficients o pand £ p in (1, 44) and (3, 17) are deter-
mined by successive approximations or the method of reduction from the infinite systems
(2. 8) and (2. 9), represented in the form (2, 14), (2. 15}, or (3. 1),(3.2). If the successive
approximations o™ and B{" which converge to o, and Py, respectively, as n— oo ,
are substituted in (1,44) or (3, 17) in place of o, and B ,then a certain functional
sequence is obtained

Prlcos?fy t—2hysinlet — A (@, (1) — T (1)}
VZ{cost—cosa)
k

O, (t) = 2 al® D (= 1)"Cpsin(k—n -+ Yyt —

=] k=0

. 2 B(n) 2 (— 1)"Cncos(k*‘n+1/3)t (n=12,...) (3-19)

n=90

Let us prove that the sequence X, (2) tends uniformly to the function @’ () asn —» oo,
It is easy to see that such a proof will reduce to the proof of uniform convergence of the
sequence P, (o O () asn— oo,

Proceeding to this latter proof, we note that we can put

(n) §.m

k k
e B =

Ynlt) = (—a<t<a) (3.18)

o) = = (3.20)

where ‘Y(nn) and & are the successive approximations which tend to the solutions Y
and & of the infinite systemns of linear equations (3,1),(3,2) as 7 — oo .
We have o &

Ny 17(")__7 6( E
LRORLIGIE Rkt F T 2 L 1 YEN

K=y Tz ) n=Q

(—a<<t<<a) (3.21)

Furthermore, it is necessary to obtain an estimate for | v{ — x| and |8 — 6;|.To
do this, let us use the Banach principle of contracted mappings [11]. This principle per-
mits establishment not only of complete regularity, or quasi-complete regularity of the
infinite systems of linear equations (2, 14), (2, 15) or (3, 1), (3, 2), but also the estimates
we need, In this connection, let us present some elementary information from functional
analysis [11],

Let us inroduce the set E of all bounded number sequences z == {&;, &;,...}. This
means that | §;| << Ky for all i, where X, is a constant dependent only on the element
z. Let z=(§;} and y = (n;} belong to E. Let us introduce a metric by means of the

equality Pz, ¥) = sup (& — )

As is known [11], the set. & with the metric introduced by such an equality becomes
a complete metric space, It is called the space m of bounded number sequences,
Let us consider the linear operator ¥ = Az in the space m which has been given by
using the equalities oo
=2 auk +b; (i=1,2,..), prem (3.22)
k=1
Let us assume that the infinite matrix | ay; l?f’k___l issuchthat (i} & m, then{(npY Em
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also, i. e, the operator 4 transforms an element of the space m again into an element
of the same space, We have

p (1, y2) = p (Az1, Az;) = sup, I,V —n,®|=

“’"'WP,,IE ik(Q —5(2))| sup; 2 Lay, [5(1)_E(2)|<

Ru=d

o0
sup 2 Zix fsup [€ (1) - gkfe) = sup; 2 | Lo fp (e, 22}
k== k=1
Let us assume that o
2 legl<e<t 3-23)
k=t
for all i If condition (3.23) is satisfied, then according to the Banch principle of con-
tracted mappings it can be asserted that the operator 4, given by (3,22), has a single
fixed point z,in the space m such that Az, = z,. The point z, can be found by succes-
sive approximations, starting from any initial element X. These successive approxima-
tions converge to #, in the metric of the space m. In other words, upon compliance with
condition (3, 23), the infinite system of linear equations
<o
g,= ket b (3.24)
k=1
in the space of bounded number sequences has a unique solution {§;}, which can be
obtained by successive approximations starting from any initial element from the same
space; in other words, the system {3, 24) is completely regular,
Let us note that an estimate of the closeness of the ath approximation z, to the fixed

point z, is hence given by the formula
7n

_ 6
= 3.
In case the conditions P (s @) =7 P (X, AX) (3.25)

[+ ] [+ed
D lag <ot ((=N+1,.), Slagl<oo (i=1,2,.,N)
- Foem
are satisfied instead of condition (3.23), the operator 4 defined above can be examined
in the subspace R, of the space m, which consists of element whose first & components
are zero,In this case,again on the basis of the Banach principle,itcan be asserted that the
operator A has a single fixed point in the subspace Ry ,i.e. the infinite system (3, 24)
is quasi-completely regular,
Therefore, the classical theory of completely regular and quasi-completely regular
infinite systems of linear equations is included in the general scheme representing the
Banach contracted mapping principle,

Now, let us utitize the estimate (3, 25) to the infinite systems (3. 1),(3.2). We have
n '3

6 )
P (xn, 1‘0) = 1 6 e (X AIX) p (y'n’ yg) == 1—_:—5' [+] (X' AQA:Y),

where 0y

=M =, yo= " yo= {8,

and 4; and A: are operators corresponding, in the above-mentioned sense, to the infinite
systems of linear equations {3. 1}, (3. 2}, respectively,
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Returning to (3,21), we find

-] k
10.0-00I< 25 3w S 16l (—a<i<a)  (20)
k=1 The= )

where
J = max (l‘l’ P%)a W =p (X’ AIX)? o = p (X’ A2 X) (3-27)
and 6 is defined by (3. 9).
Using the inequality (2,28), we obtain from (3, 26)
543
0,0 —0mI<ZE IR (3 —8) (—a<i<w)  (329)
The inequality (3, 28) shows the validity of the above-mentioned assertions,
Therefore, for A satisfying condition (3, 10), the sequence ¥, (£) tends to the function
@'(1) uniformly in ¢ (—a < ¢t < a) as B —» oo, It is easy to show that this assertion
holds even when ) does-not satisfy the condition (3, 10), However, we shall not consider
this point,
Let us examine the expression

| % () — @' ()| =

which is the absclute difference between the approximate and true expressions for the
contact stresses under the elastic laps, In order to estimate this difference, let us note
that the function [2 (cos¢ — cos a)]~": defines those singularities which are inherent
to the contact stresses near the ends of the elastic laps, It is hence natural to judge the
closeness of the approximate expressions Xn» (£) of the contact stresses to the true @'({)
by estimating the difference |, (£) — @ (t)]. We can write this estimate, represented

by (3.28),as (* n, 3 2 /3
Y28 ) o, (t)—m(t|<f‘°“ 5L (%2) + 322 () (3.29)
te (—oa,a) 3 Vsina
Let us now borrow the estimates pu; and M, from (3,27), It is known that the selection
of the element X is arbitrary and affects only the rapidity of convergence of the succes-
sive approximations, Let us take the null element as X for the case of the operator 4;
or the infinite system (3,1). Then

AD, (1) —0 ()]
V2 (cost — cos a)

(—a<t<a)

py = sup {Ajy|m"=8|P_, (cosa)— P, (cosa)|} <
™

A r]{supm”| P_, (cosa)| + sup mt=¥ P (cosa) |} <
m

<AL <m—1) + ) MTI+ VD)

VSID X m=2,3,.. VSlll o$

we take X = {(— 1)*2P} in the case of the operator A, or the infinite system

(3, 2), we obtain P P+ Vz)
. 1/,-8 o
Mo = 5o sgip [m¥=8| P (cosa) + P_, (cosa) | < e Vo
Therefore, the following estimates hold :
/Hﬂ(i—rVﬁ) PMTVE) 330
EI Vsina ’ by < 27 Vsina (3.30)

*) In practice, we can consider § =0.



818 N, Kh, Arutiunian and S, M, Mkhitarian

Hence, it is seen that the constants p; and p,,and therefore, also 1, depend on the
quantities A, |y| and P,

Considering the nth approximations {v, >} and {6 ")}, which are constructed from
the infinite systems of linear eqautions (3. 1), (3, 2), respectively, by starting from the
above-mentioned initial elements X, we find {a¢"’} and {Bk"’} from (3.20). We then
form the functions ¥, (¢) and @, (¢£) by means of (3, 18),(3,19). These functions
define the approximate expressions for the contact stresses, How close they are to the
true expression for the contact stresses is seen from the inequality (3.29), This inequality
shows that sup |®, (t) — D (¢) | becomes less and less for ¢ & (— o, &) as the
number n of the successive approximations increases,

Let us consider the first approximation in rather more detail, We find for the first
approximations {ﬂ})} and {81} from the infinite systems (3, 1),(3.2)

i) = MkY3 [P_, (cosa) — Py(cosa)]
(k=1,2,..
(1) P s
Oy = ‘Z{k =8 [Py (cosa) 4 P_y(cosa)]
and therefore, according to (3.20)

P_y{cosa)— P_x(cos a w_ P Pylcosa)+ P.yp(cosa) o __
a®_ Ay k { )k x (cos a) , BV= - (k=1,2, ...)
From (2, 12) we find the approximate value (in a first approximation) of the con-

stant Y ~ o0 P p -1
P2 3 LrRD 2 PO coska (3.31)
k=1

Therefore, the contact stresses under the elastic laps, determined by (1,45), can be
evaluated in a first approximation by means of the computational formula

P cos (nz ] 21) . 2nhy sin (nz / 21)
1 V 2 [eos(nz/l) —cos(na/l)] 1 VZ [eos (nex / I)—cos (na [ 1)]
P_, (cosa)— P, (cos a)
k

T(x) =

An <
; Ay
I V2 [cos(:zx/ ly—cos (na / 1)] {A__
X 2 (— " Casin (e —n + ) F7] —
20
P py(cosa)-+ P_x(cosa) X ZP]
Y [5&' k - — (=1 | %

k1

&
X2(~—1)Cﬂcos[(k——n+1/z)fl£]} (maczca  (3.32)
n=1

where y and (', are determined, respectively, from (3, 31) and (1, 43),
The absolute error admitted here is determined according to (3,29) by the inequality

29 5 8 3 2 (8
sup |0y (1) — @ ()] < 2 “3’”;,*8‘?%”” (3.33)

te(—a,a)
where 0 is defined by (3, 9), and p by (3, 30), The left side of the inequality (3. 33) is
evidently arbitrarily small for sufficiently small A.
Appropriate estimates can also be obtained when A does not satisfy the inequality
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{3.10), and therefore, the infinite systems of linear equations (3, 1), (3. 2) are quasi-
completely regular,
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DUAL TRIGONOMETRIC SERIES
IN CRACK AND PUNCH PROBLEMS

PMM Vol, 33, N5, 1969, pp, 844-849

B, A, KUDRIAVTSEV and V, Z, PARTON
{Moscow)
{Received December 19, 1968)

The author obtains the solution of a certain class of dual trigonometric series with the
aid of a method proposed by Tranter [1], Certain crack and punch problems, both static
and dynamic, reduce to this class, As an example the problem of steady-state vibration
of an unbounded plane with a periodic system of slits along the real axis is considered,
The solution which is obtained permits the determination of a purely inertiat effect
which lowers the fracture load,

1. Let us consider the dual trigonometric series
oo

D nB¥cosnE=F(8) (0<E<ED
n=1
w (1.1
D B*cosnt==0 (o<E<M

n=1i



